Joint Blind Symbol Rate Estimation and Data Symbol Detection for Linearly Modulated Signals
Abstract
This paper focuses on non-data aided estimation of the symbol rate and detecting the data symbols in linearlymodulated signals. A blind oversampling-based signal detector under the circumstance of unknown symbol period is proposed. First, the symbol rate is estimated using the Expectation Maximization (EM) algorithm. However, within the framework of EM algorithm, it is difficult to obtain a closed form for the loglikelihood function and the density function. Therefore, these two functions are approximated in this paper by using the Particle Filter (PF) technique. In addition, a symbol rate estimator that exploits the cyclic correlation information is proposed as an initialization estimator for the EM algorithm. Second, the blind data symbol detector based on the PF algorithm is designed.Since the signal is oversampled at the receiver side, a delayed multi-sampling PF detector is proposed to manage the intersymbol interference caused by oversampling, and to improve the demodulation performance of the data symbols. In the PF algorithm, the hybrid importance function is used to generate both data samples and channel model coefficients, and the Mixture Kalman Filter (MKF) algorithm is used to marginalize out the fading channel coefficients.
Keywords
Symbol rate estimation, Data symbol detection, Particle Filter, Cyclostationarity, Expectation Maximization
Full Text:
PDFDOI: http://dx.doi.org/10.24138/jcomss.v5i3.204
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.